Parallel computing is everywhere, on smartphones, laptops; at online shopping sites, universities, computing centers; behind the search engines. Efficiency and productivity at these scales and contexts are only possible by scalable parallel algorithms using efficient communication schemes, routing and networks.
Theoretical tools enabling scalability, modeling and understanding parallel algorithms, and data structures for exploiting parallelism are more important than ever.
High quality, original papers are solicited on this general topic of theory and algorithms for parallel computation including communication and network algorithms.
Focus
The focus is on, but not limited to, the following:
- Theoretical and algorithmic aspects of packing, scheduling, and resource management
- Combinatorial and graph algorithms
- Numerical algorithms
- Power/energy-aware algorithms
- Fault tolerance and error resilient algorithms
- Algorithms on GPUs and accelerators
- Approximation, online and streaming algorithms for parallel processing
- Data structures for parallel algorithms
- Foundations, complexity theory, models, and emerging paradigms for parallel, distributed, and network computation
- Algorithms and models for Big Data/data-intensive parallel computing
- Algorithms for routing and information dissemination, communication networks
- Lower bounds for parallel computation
- Algorithms for Cloud computing
Committee
Chair: Geppino Pucci (University of Padua, Italy)
Local chair: Pedro Ribeiro (University of Porto, Portugal)
Kieran T. Herley (University College Cork, Cork, Ireland)
Philippas Tsigas (Chalmers University of Technology, Sweden)
Christos Zaroliagis (University of Patras, Greece)
Mauro Bianco (Swiss National Supercomputing Centre, Switzerland)
Henning Meyerhenke (Karlsruher Institut für Technologie, Germany)
Michele Scquizzato (University of Houston, USA)