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Abstract

Heterogeneous computing is seen as a path forward to deliver the energy and performance 
improvements needed over the next decade. Heterogeneous systems augment CPUs (Central 
Processing Units) with GPUs (Graphics Processing Units), FPGAs (Field Programmable Gate 
Arrays) and other resources that are able to accelerate important computations while 
consuming less energy. There are also heterogeneous architectures on-chip, like the processors 
developed for mobile devices (laptops, tablets and smartphones) comprised of multiple 
cores and a GPU. More recently, some architectures have also paired multicores along with an 
FPGA on the same die.

This tutorial first covers important hardware aspects of these heterogeneous architectures. We 
briefly discuss the underlying architecture of some heterogeneous chips composed of 
multicores + GPU and multicores + FPGA, delving into the differences between both kind of 
accelerators and how we can measure the energy they consume. We then move to the software
side of the tutorial, where different heterogeneous programming models will be introduced, 
paying more attention to those that are aimed at exploiting several devices at the same time 
(CPU + GPU or CPU + FPGA). Again, the different optimization techniques and the levels of 
parallelism that are suitable for the GPU and for the FPGA will be identified. 

After providing a survey of available programming models, we will focus on Intel® Threading 
Building Blocks (Intel® TBB).  TBB is a widely used, portable C++ template library for parallel 
programming, that provides generic parallel algorithms, concurrent containers, a work-stealing 
task scheduler, a data flow programming abstraction, low-level primitives for synchronization 
and thread local storage and a scalable memory allocator. The generic algorithms in TBB capture
many of the common design patterns used in parallel programming. While Intel TBB was first 
introduced in 2006 as a shared-memory parallel programming library, it has recently been 
extended to support heterogeneous programming. These new extensions allow developers to 
more easily coordinate the use of accelerators such as integrated and discrete GPUs, attached 
devices such as Intel® Xeon Phi co-processors, and FPGAs in to their parallel C++ applications. 
We will briefly cover the basics of the TBB library before presenting deeper coverage of the new 
features included for heterogeneous programming. Attendees can take part in hands-on 
exercises to create a small example and evolve it from a host-only shared-memory 



implementation to a heterogeneous implementation that runs on both the host and an 
accelerator.

Finally, we discuss some experimental parallel patterns implemented on top of TBB. These 
heterogeneous implementations of the pipeline and parallel_for templates automatically 
distribute the workload between the multicore and the accelerator, balancing load and 
considering energy consumption in the scheduling policies. We evaluate the performance and 
energy efficiency of the different approaches for several heterogeneous processors: Intel® 
Xeon, Samsung Exynos 5 Octa, Xilinx® Zynq and Altera Cyclone V. 

Goals

By the end of the tutorial, attendees will be familiar with the important architectural features of
commonly available accelerators, will have an understanding of how to measure performance 
and energy on these systems, and will have a sense of what optimizations and types of 
parallelism are suitable for these devices. Attendees will have also been introduced to Intel TBB,
learned about its heterogeneous programming features, and will have been given the 
opportunity to build and execute a hybrid application.  Finally, attendees will learn about 
ongoing research in developing hybrid schedulers for parallel patterns such as pipeline and 
parallel_for.

Prerequisite Knowledge

Attendees should be comfortable programming in C++ using modern features such as templates
and lambda expressions. Attendees should also have an understanding of basic parallel 
programming concepts such as threads and locks. No previous experience with Intel® Threading 
Building Blocks, GPUs or FPGAs is required.

Outline:

Part 1: Motivation and background
 An introduction to heterogeneous architectures
 Important features of different accelerators such as GPUs and FPGAs
 How to measure performance and energy
 A survey of heterogeneous programming models
 How to determine if a computation is suitable for an accelerator

Part 2: Intel TBB and its heterogeneous features

 Overview of the philosophy and shared-memory features of the library
 Deep-dive in to the flow graph and its heterogeneous features



 Hands-On Exercises
- “Hello TBB” verifying that the environment is set up correctly
- Implement small example as a shared-memory flow graph

Part 3: Using heterogeneous flow graph nodes to coordinate accelerators 

 A deep dive in to the nodes to be used in examples
 Using async_node to do asynchronous communication
 Using streaming_node and the OpenCL factory to access integrated graphics and FPGAs 
 Hands-On Exercises

- Adding async_node to the example to overlap an asynchronous computation
- Adding streaming_node to use an OpenCL-compatible device
- Targeting an FPGA

Part 4: Heterogeneous templates on top of TBB 
 Overview of hybrid scheduling, goals and challenges
 Description of the hybrid pipeline and parallel_for implementations
 Experimental evaluation
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